An hp-version interior penalty discontinuous Galerkin (IPDG) method under nonconforming meshes is proposed to solve the quad-curl eigenvalue problem. We prove well-posedness of the numerical scheme for the quad-curl equation and then derive an error estimate in a mesh-dependent norm, which is optimal with respect to h but has different p-version error bounds under conforming and nonconforming tetrahedron meshes. The hp-version discrete compactness of the DG space is established for the convergence proof. The performance of the method is demonstrated by numerical experiments using conforming/nonconforming meshes and h-version/p-version refinement. The optimal h-version convergence rate and the exponential p-version convergence rate are observed.
翻译:提议在不兼容的中间线下采用 hp-version 内置处罚不连续的 Galerkin (IPDG) 方法来解决四分曲断值问题。 我们证明四分曲方程的数值方案非常可靠,然后在以网状为依存的规范中得出一个误差估计,该规范对h来说是最佳的,但在符合和不符合四面线的中间线下有不同的反向误差界限。DG空间的 hp-version 离异紧凑性是为求同证据而确定的。该方法的性能通过使用符合/不符合 meshes 和 h-version/p-version 精细化的数字实验来证明。 遵循了最佳的 hversion 趋同率和指数- pversion 趋同率。