We present a new method to combine evidential top-view grid maps estimated based on heterogeneous sensor sources. Dempster's combination rule that is usually applied in this context provides undesired results with highly conflicting inputs. Therefore, we use more advanced evidential reasoning techniques and improve the conflict resolution by modeling the reliability of the evidence sources. We propose a data-driven reliability estimation to optimize the fusion quality using the Kitti-360 dataset. We apply the proposed method to the fusion of LiDAR and stereo camera data and evaluate the results qualitatively and quantitatively. The results demonstrate that our proposed method robustly combines measurements from heterogeneous sensors and successfully resolves sensor conflicts.
翻译:我们提出了一个新的方法,将根据不同感应源估计的证据顶层网格图结合起来。在这种情况下通常适用的Dempster的组合规则提供了不理想的结果,而且投入高度冲突。因此,我们使用更先进的证据推理技术,通过模拟证据来源的可靠性来改进冲突的解决。我们提议以数据驱动的可靠性估算,以便利用基迪-360数据集优化聚合质量。我们将拟议的方法应用于LIDAR和立体摄像机数据的聚合,并从质量和数量上评价结果。结果表明,我们拟议的方法将不同感测器的测量数据强有力地结合起来,成功地解决感测冲突。