项目名称: 功能化介孔炭微球吸附铀的性能及机理研究

项目编号: No.11475044

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 数理科学和化学

项目作者: 刘云海

作者单位: 东华理工大学

项目金额: 80万元

中文摘要: 从乏燃料中回收铀是我国既定的核燃料循环技术路线。因此,无论是从资源回收利用或是环境放射性污染控制的角度,以经济和环境友好地方式从水溶液中吸附铀都具有重要的科学意义和现实意义。本项目旨在通过优选模板剂,以天然碳水化合物(淀粉、葡萄糖和蔗糖等)为碳源,含特定官能团的乙烯基单体为功能化试剂,采用一步低温水热法制备功能化介孔炭微球。从宏观上研究水热工艺参数对功能化炭微球介孔微观拓扑结构和吸附性能的影响,从微观上研究功能化炭微球结构\形态与铀吸附性能之间的关系;通过FT-IR、XPS和形态分析等技术手段,结合吸附动力学模型,从分子水平上揭示功能化炭微球吸附铀的作用机理;开展功能化介孔炭微球处理实际含铀水溶液的应用研究。本项目的完成将为我国新型放射性核素分离富/集材料和环境放射性污染治理的研究提供重要的基础数据。

中文关键词: 介孔炭微球纳米复合材料;铀酰离子;吸附分离;机理研究

英文摘要: Recovery of uranium from the spent fuel is the planned path of nuclear fuel cycle technology in China.Therefore the sorption of uranium from water by an efficient and environment-friend is of scientific and realistic significance. In this project, the functional mesoprorous carbon spheres (FMCS) will be prepared by hydrothermal method via one-step with optimal templates, natural carbohydrate (starch,glucose and sucrose etc.) as carbon source and vinyl monomers containing specific functional groups as functionalization reagents. The effect of hydrothermal conditions on the adsorption properties and microstructures will be studied, and then the relationship between structures and sorption properties was explored. The sorption mechanism of uranium on the FMCS will be also confirmed by means of FT-IR, XPS and speciation analysis combined with sorption dynamic modle. Additionally, application research of processing uranium-containing wastewater by the FMCS will be investigated. The project will provide the fundamental and scientific basis for FMCS being a new type uranium separation-preconcentration material and radioactive pollution abatement.

英文关键词: mesoporous carbon spheres nanocomposite;uranyl;adsorption/separation;mechanisms

成为VIP会员查看完整内容
0

相关内容

专知会员服务
85+阅读 · 2021年8月8日
【博士论文】解耦合的类脑计算系统栈设计
专知会员服务
30+阅读 · 2020年12月14日
专知会员服务
34+阅读 · 2020年11月26日
【经典书】操作系统导论,687页pdf
专知会员服务
171+阅读 · 2020年10月28日
【实用书】Python编程,140页pdf
专知会员服务
41+阅读 · 2020年8月20日
【高能所】如何做好⼀份学术报告& 简单介绍LaTeX 的使用
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
Chrome vs Firefox 性能之争,到底哪家强?
CSDN
0+阅读 · 2022年1月11日
流程工业数字孪生关键技术探讨
专知
1+阅读 · 2021年4月7日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
Science:脂肪细胞外泌体对巨噬细胞发挥调节功能
外泌体之家
19+阅读 · 2019年3月7日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
46+阅读 · 2021年10月4日
Arxiv
19+阅读 · 2021年6月15日
Arxiv
49+阅读 · 2021年5月9日
Arxiv
56+阅读 · 2021年5月3日
A Survey on Edge Intelligence
Arxiv
50+阅读 · 2020年3月26日
Arxiv
25+阅读 · 2018年1月24日
小贴士
相关主题
相关VIP内容
专知会员服务
85+阅读 · 2021年8月8日
【博士论文】解耦合的类脑计算系统栈设计
专知会员服务
30+阅读 · 2020年12月14日
专知会员服务
34+阅读 · 2020年11月26日
【经典书】操作系统导论,687页pdf
专知会员服务
171+阅读 · 2020年10月28日
【实用书】Python编程,140页pdf
专知会员服务
41+阅读 · 2020年8月20日
【高能所】如何做好⼀份学术报告& 简单介绍LaTeX 的使用
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
相关资讯
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员