Tumor angiogenesis involves a collection of tumor cells moving towards blood vessels for nutrients to grow. Angiogenesis, and in general chemo- taxis, systems have been modeled using partial differential equations (PDEs) and as such require numerical methods to approximate their solutions. Here we study a Parabolic-Hyperbolic Keller-Segel (PHKS) system in three space dimensions. The model arises in the angiogenesis literature. To compute solutions to the PHKS system, we develop a neural stochastic interacting particle-field (NSIPF) method where the density variable is represented as empirical measures of particles and the field variable (concentration of chemoattractant) approximated by a convolutional neural network (CNN). We discuss the performance of NSIPF in computing multi-bump solutions to the system.
翻译:肿瘤血管生成涉及肿瘤细胞向血管移动以获取生长所需营养的过程。血管生成及一般趋化系统通常采用偏微分方程建模,因此需要数值方法来近似求解。本文研究三维空间中的抛物-双曲Keller-Segel系统,该模型源自血管生成研究领域。为求解PHKS系统,我们提出了一种神经随机交互粒子-场方法,其中密度变量通过粒子的经验测度表示,而场变量(趋化剂浓度)则通过卷积神经网络进行逼近。我们讨论了NSIPF方法在计算系统多峰解方面的性能表现。