Premise selection is crucial for large theory reasoning as the sheer size of the problems quickly leads to resource starvation. This paper proposes a premise selection approach inspired by the domain of image captioning, where language models automatically generate a suitable caption for a given image. Likewise, we attempt to generate the sequence of axioms required to construct the proof of a given problem. This is achieved by combining a pre-trained graph neural network with a language model. We evaluated different configurations of our method and experience a 17.7% improvement gain over the baseline.


翻译:---- 前提选择对于大规模理论推理非常关键,因为问题的规模很快就会导致资源匮乏。本文提出了一种受到图像字幕领域启发的前提选择方法,在该领域中,语言模型自动为给定的图像生成适当的字幕。同样,我们试图生成构建给定问题证明所需的公理序列。这是通过将预训练的图神经网络与语言模型相结合来实现的。我们评估了我们方法的不同配置,并在基线上获得了17.7%的提高。

0
下载
关闭预览

相关内容

最新《Transformers模型》教程,64页ppt
专知会员服务
312+阅读 · 2020年11月26日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
96+阅读 · 2020年5月31日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年5月16日
Attentive Graph Neural Networks for Few-Shot Learning
Arxiv
40+阅读 · 2020年7月14日
Arxiv
20+阅读 · 2019年11月23日
Arxiv
14+阅读 · 2019年9月11日
A Comprehensive Survey on Graph Neural Networks
Arxiv
13+阅读 · 2019年3月10日
Arxiv
19+阅读 · 2018年3月28日
VIP会员
相关论文
Arxiv
0+阅读 · 2023年5月16日
Attentive Graph Neural Networks for Few-Shot Learning
Arxiv
40+阅读 · 2020年7月14日
Arxiv
20+阅读 · 2019年11月23日
Arxiv
14+阅读 · 2019年9月11日
A Comprehensive Survey on Graph Neural Networks
Arxiv
13+阅读 · 2019年3月10日
Arxiv
19+阅读 · 2018年3月28日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员