This paper considers the balanced hypergraph partitioning problem, which asks for partitioning the vertices into $k$ disjoint blocks of bounded size while minimizing an objective function over the hyperedges. Here, we consider the most commonly used connectivity metric. We describe our open source hypergraph partitioner KaHyPar which is based on the successful multi-level approach -- driving it to the extreme of one level for (almost) every vertex. Using carefully designed data structures and dynamic update techniques, this approach offers a very good time--quality tradeoff. We present two preprocessing techniques -- pin sparsification using locality sensitive hashing and community detection based on the Louvain algorithm. The community structure is used to guide the coarsening process that incrementally contracts vertices. Portfolio-based partitioning of the contracted hypergraph already achieves good initial solutions. While reversing the contractions, a combination of highly-localized direct $k$-way local search and flow-based techniques that take a more global view, refine the partition to achieve high quality. Optionally, a memetic algorithm evolves a pool of solution candidates to obtain even higher quality. We evaluate KaHyPar on a large set of instances from a wide range of application domains. With respect to quality, KaHyPar outperforms all previously considered systems that can handle large hypergraphs such as hMETIS, PaToH, Mondriaan, or Zoltan. KaHyPar is also faster than most of these systems except for PaToH which represents a different speed--quality tradeoff. The results even extend to the special case of graph partitioning, where specialized systems such as KaHIP should have an advantage.


翻译:本文考虑了平衡的超高分解问题, 它要求将脊椎分割成 $k$ 的不连接区块, 并最大限度地减少高端的客观功能。 这里, 我们考虑最常用的连接度 。 我们描述基于成功的多层次方法的开放源头高分解器 KaHyPar 。 将它推向一个顶点的极端水平, 每个顶点( 几乎) 。 使用精心设计的数据结构和动态更新技术, 这种方法提供了非常高的时间质量的交换。 我们展示了两种预处理技术 -- -- 使用地方敏感散列和根据 Louvain 算法进行社区检测。 我们用社区结构来指导递增压顶点的剖析进程。 包包的超高分解方法已经取得了良好的初步解决方案。 在扭转收缩时, 高本地直接本地搜索和流基技术的组合, 将更接近全球的视野, 改进分区, 实现高质量。 选择, Ka- Per 特殊的算法将一个最高级的解算器, 也就是高端的系统 。

0
下载
关闭预览

相关内容

【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
156+阅读 · 2020年5月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Query Embedding on Hyper-relational Knowledge Graphs
Arxiv
4+阅读 · 2021年6月17日
Arxiv
9+阅读 · 2018年10月18日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员