We propose a new type of ultimate-Shannon-limit-approaching codes called spatially coupled protograph-based low-density parity-check Hadamard convolutional codes (SC-PLDPCH-CCs), which are constructed by spatially coupling PLDPC-Hadamard block codes. We develop an efficient decoding algorithm that combines pipeline decoding and layered scheduling for the decoding of SC-PLDPCH-CCs, and analyze the latency and complexity of the decoder. To estimate the decoding thresholds of SC-PLDPCHCCs, we first propose a layered protograph extrinsic information transfer (PEXIT) algorithm to evaluate the thresholds of spatially coupled PLDPC-Hadamard terminated codes (SC-PLDPCH-TDCs) with a moderate coupling length. With the use of the proposed layered PEXIT method, we develop a genetic algorithm to find good SC-PLDPCH-TDCs in a systematic way. Then we extend the coupling length of these SC-PLDPCH-TDCs to form good SC-PLDPCH-CCs. Results show that our constructed SC-PLDPCH-CCs can achieve comparable thresholds to the block code counterparts. Simulations illustrate the superiority of the SC-PLDPCH-CCs over the block code counterparts and other state-of-the-art low-rate codes in terms of error performance. For the rate-0.00295 SC-PLDPCH-CC, a bit error rate of 1e-5 is achieved at Eb/N0 = -1.465 dB, which is only 0.125 dB from the ultimate Shannon limit.
翻译:我们提出一种新型的“最终防爆限制”代码,称为“空间结合的分层分层码”,称为“空间结合的分层分层码”,称为“Hadamard 分层(SC-PLDPCH-CCs)”,由空间结合的PLDPC-Hadamard区块码构建。我们开发了一种高效解码算法,将管道解码和分层安排用于解码 SC-PLDPCH-CC-CCs,并分析解码器的长度和复杂性。为了估算SC-PLDPCCs的分层分层分层分层分层分层码,我们首先提出了“Hadamad 分层(SC-PLDP-PCH-CC) 低密度(SC-PLCH-DCs) 分层分层分层码分层分层(SC-PLD-DCs) 的分层分层分层分层分层码(SC-PLD-D-D-DCs)”,然后我们将这些分层分层分层的分层的分层分层分层分层分层分层分层分层分层分层分层分层分层分层分层分层的分层分层分层分层分层分层分层的分层分级的分级的分层分层分层分级的分层信息信息(PRC-CP-CP-S-S-CH-CH-S-S-CH-S-S-S-S-C-C-C-C-C-S-C-S-S-S-S-S-S-S-D-S-S-D-C-C-S-S-S-S-S-S-C-C-C-S-S-S-S-S-C-C-C-C-C-C-S-S-S-S-D-D-S-S-S-S-S-S-S-S-D-S-S-S-S-S-S-S-S-D-D-D-D-S-D-S-S-S-D-S-S-S-S-S-S-D-S-C