Gait emotion recognition plays a crucial role in the intelligent system. Most of the existing methods recognize emotions by focusing on local actions over time. However, they ignore that the effective distances of different emotions in the time domain are different, and the local actions during walking are quite similar. Thus, emotions should be represented by global states instead of indirect local actions. To address these issues, a novel Multi Scale Adaptive Graph Convolution Network (MSA-GCN) is presented in this work through constructing dynamic temporal receptive fields and designing multiscale information aggregation to recognize emotions. In our model, a adaptive selective spatial-temporal graph convolution is designed to select the convolution kernel dynamically to obtain the soft spatio-temporal features of different emotions. Moreover, a Cross-Scale mapping Fusion Mechanism (CSFM) is designed to construct an adaptive adjacency matrix to enhance information interaction and reduce redundancy. Compared with previous state-of-the-art methods, the proposed method achieves the best performance on two public datasets, improving the mAP by 2\%. We also conduct extensive ablations studies to show the effectiveness of different components in our methods.
翻译:Gait 情绪认知在智能系统中起着关键作用。 大部分现有方法通过长期关注地方行动来认识情感。 但是,它们忽略了时间范围内不同情感的有效距离是不同的, 而在行走过程中的地方行动也非常相似。 因此, 情绪应该由全球国家而不是间接的地方行动来代表。 为了解决这些问题, 在这项工作中提出了一个新的多比例调控图集网络( MSA- GCN), 通过构建动态时间可接受域和设计多尺度信息汇总来识别情感。 在我们的模型中, 一个适应性、 有选择的空间时空图变迁旨在动态地选择演动内核以获取不同情绪的软弹片时空特征。 此外, 一个跨层绘图组合机制( CSFM) 旨在构建一个适应性相近矩阵, 以加强信息互动和减少冗余。 与以前的最先进方法相比, 拟议的方法在两个公共数据集上取得了最佳性, 改进了 mAP 2 。 我们还进行了广泛的比拟方法, 以显示我们方法中不同组成部分的有效性。