Simulating the effects of skincare products on face is a potential new way to communicate the efficacy of skincare products in skin diagnostics and product recommendations. Furthermore, such simulations enable one to anticipate his/her skin conditions and better manage skin health. However, there is a lack of effective simulations today. In this paper, we propose the first simulation model to reveal facial pore changes after using skincare products. Our simulation pipeline consists of 2 steps: training data establishment and facial pore simulation. To establish training data, we collect face images with various pore quality indexes from short-term (8-weeks) clinical studies. People often experience significant skin fluctuations (due to natural rhythms, external stressors, etc.,), which introduces large perturbations in clinical data. To address this problem, we propose a sliding window mechanism to clean data and select representative index(es) to represent facial pore changes. Facial pore simulation stage consists of 3 modules: UNet-based segmentation module to localize facial pores; regression module to predict time-dependent warping hyperparameters; and deformation module, taking warping hyperparameters and pore segmentation labels as inputs, to precisely deform pores accordingly. The proposed simulation is able to render realistic facial pore changes. And this work will pave the way for future research in facial skin simulation and skincare product developments.


翻译:模拟皮肤护理产品对面部的影响是一种潜在的新方式,通过皮肤诊断和产品建议来交流皮肤护理产品在皮肤诊断和产品建议中的功效。此外,这种模拟使一个人能够预测皮肤状况并更好地管理皮肤健康。然而,今天缺乏有效的模拟。在本文中,我们提出第一个模拟模型,以在使用皮肤护理产品后显示面孔变化。我们的模拟管道包括两个步骤:培训数据建立和面孔模拟。为了建立培训数据,我们从短期(8周)临床研究中收集面部图像,并用各种孔质量指数来收集。人们经常经历严重的皮肤波动(由于自然节律、外部压力调节器等),从而在临床数据中引入大规模扰动。为了解决这一问题,我们建议采用一个滑动窗口机制来清理数据,并选择代表面孔变化的代表性指数。 面孔模拟阶段由3个模块组成:基于UNet的面部分解模块,以将面部肿瘤地方化;回归模块,以预测依赖时间的超焦度计;以及脱形模块,在进行超常调时,进行超常动的皮肤分析时,从而在模拟过程中进行超常变形分析,进行超常进行超常的皮肤分析,从而进行模拟研究,从而进行精确地将模拟成模模模模模模模模模模模模模模模模模模模模模模模模模模制成。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
15+阅读 · 2022年6月14日
Arxiv
38+阅读 · 2020年3月10日
On Feature Normalization and Data Augmentation
Arxiv
15+阅读 · 2020年2月25日
Feature Denoising for Improving Adversarial Robustness
Arxiv
15+阅读 · 2018年12月9日
VIP会员
相关资讯
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员