Deep Learning (DL) has been successfully applied to a wide range of application domains, including safety-critical ones. Several DL testing approaches have been recently proposed in the literature but none of them aims to assess how different interpretable features of the generated inputs affect the system's behaviour. In this paper, we resort to Illumination Search to find the highest-performing test cases (i.e., misbehaving and closest to misbehaving), spread across the cells of a map representing the feature space of the system. We introduce a methodology that guides the users of our approach in the tasks of identifying and quantifying the dimensions of the feature space for a given domain. We developed DeepHyperion, a search-based tool for DL systems that illuminates, i.e., explores at large, the feature space, by providing developers with an interpretable feature map where automatically generated inputs are placed along with information about the exposed behaviours.
翻译:深度学习( DL) 已成功地应用于广泛的应用领域, 包括安全关键领域。 文献中最近提出了几个 DL 测试方法, 但其中没有一个旨在评估所生成投入的不同可解释特性如何影响系统的行为。 在本文中, 我们使用“ 透析搜索” 来寻找最优秀的测试案例( 即行为不当和行为最差), 分布在代表系统特征空间的地图的单元格中。 我们引入了一种方法, 指导我们用于确定和量化特定域地物空间尺寸的任务的方法的用户。 我们开发了DeepHyperion, 这是一种基于搜索的工具, 用于DL 系统的搜索工具, 用于显示, 即大范围探索, 地物空间, 向开发者提供可解释的地物图, 将自动生成的投入与关于暴露行为的信息放在其中 。