Two-sided matching markets have demonstrated significant impact in many real-world applications, including school choice, medical residency placement, electric vehicle charging, ride sharing, and recommender systems. However, traditional models often assume that preferences are known, which is not always the case in modern markets, where preferences are unknown and must be learned. For example, a company may not know its preference over all job applicants a priori in online markets. Recent research has modeled matching markets as multi-armed bandit (MAB) problem and primarily focused on optimizing matching for one side of the market, while often resulting in a pessimal solution for the other side. In this paper, we adopt a welfarist approach for both sides of the market, focusing on two metrics: (1) Utilitarian welfare and (2) Rawlsian welfare, while maintaining market stability. For these metrics, we propose algorithms based on epoch Explore-Then-Commit (ETC) and analyze their regret bounds. Finally, we conduct simulated experiments to evaluate both welfare and market stability.
翻译:暂无翻译