Learning 3D representations that generalize well to arbitrarily oriented inputs is a challenge of practical importance in applications varying from computer vision to physics and chemistry. We propose a novel multi-resolution convolutional architecture for learning over concentric spherical feature maps, of which the single sphere representation is a special case. Our hierarchical architecture is based on alternatively learning to incorporate both intra-sphere and inter-sphere information. We show the applicability of our method for two different types of 3D inputs, mesh objects, which can be regularly sampled, and point clouds, which are irregularly distributed. We also propose an efficient mapping of point clouds to concentric spherical images, thereby bridging spherical convolutions on grids with general point clouds. We demonstrate the effectiveness of our approach in improving state-of-the-art performance on 3D classification tasks with rotated data.
翻译:在从计算机视觉到物理学和化学的不同应用中,学习3D的表达方式,如果能够将信息概括到任意导向的投入,则是一项具有实际重要性的挑战。我们提议建立一个新的多分辨率的多分层结构,用于对同心球地貌图进行学习,而单一的球体地貌图则是其中的一个特例。我们的等级结构以学习同时纳入内侧和外侧信息为基础。我们展示了我们的方法适用于两种不同的3D输入类型,即可以定期抽样的网目物体和不定期分布的点云。我们还提议对点云进行有效的绘图,将其绘制成同心球形图象,从而在与一般点云的电网格上进行交接。我们展示了我们用旋转数据改进3D分类任务最新表现的方法的有效性。