The study of Markov processes and broadcasting on trees has deep connections to a variety of areas including statistical physics, graphical models, phylogenetic reconstruction, MCMC algorithms, and community detection in random graphs. Notably, the celebrated Belief Propagation (BP) algorithm achieves optimal performance for the reconstruction problem of predicting the value of the Markov process at the root of the tree from its values at the leaves. Recently, the analysis of low-degree polynomials has emerged as a valuable tool for predicting computational-to-statistical gaps. In this work, we investigate the performance of low-degree polynomials for the reconstruction problem. Perhaps surprisingly, we show that there are simple tree models of fixed arity $d$ and growing depth $\ell$ (so $N = 2^{\ell \log_2(d)}$ leaves) where (1) nontrivial reconstruction of the root value is possible with a simple polynomial time algorithm and with robustness to noise, but not with any polynomial of degree $2^{c \ell} = N^{c/\log_2(d)}$ for $c > 0$ a constant, and (2) when the tree is unknown and given multiple samples with correlated root assignments, nontrivial reconstruction of the root value is possible with a simple, noise-robust, and computationally efficient SQ algorithm but not with any polynomial of degree $2^{c \ell}$. These results clarify limitations of low-degree polynomials vs. polynomial time algorithms for Bayesian estimation problems. They also complement recent work of Moitra, Mossel, and Sandon who studied the circuit complexity of Belief Propagation. As a consequence of our main result, we show that for some $c' > 0$, $\exp(2^{c'\ell}) = \exp(N^{c'/\log_2(d)})$ many samples are needed for RBF kernel regression to obtain nontrivial correlation with the true regression function (BP). We pose related open questions about low-degree polynomials and the Kesten-Stigum threshold.


翻译:Markov 进程和树上广播的研究与一系列领域有着深厚的联系, 包括统计物理、 图形模型、 植物遗传重建、 MCMC 算法以及随机图中的社区检测。 值得注意的是, 值得庆祝的信仰促进算法( BP) 算得上重建问题的最佳性能, 从树根的值中预测Markov 进程的价值, 从树叶的值。 最近, 低度多角度多角度的数学分析, 作为一种有价值的工具, 用来预测计算性向统计性差距。 在这项工作中, 我们为重建问题调查低度的多度多层次多层次多层次的多层次多层次多层次的多层次多层次多层次的多层次多层次多层次的多层次的 美元( 美元) 以简单的多层次的多层次的多层次的计算算法和多层次的多层次的多层次的解算结果, 以纯度( 美元) 以纯度的离子( 美元) 多层次的离子/ 和直径的直径的直径的直径的直径的直径的直径的直系值 。 和直系的直系的直系的直系的直系的直系的直系的直系的直系的直系的直系的直系的直系的直系的直系的直系、直系、直系、直系的直系的直系的直系的直系的直系、直系的直系的直系、直系、直系、直系、直系、直系、直系、直系的直系的直系、直系的直系的直系的直系的直系的直系的直系的直系的直系的直系的直系的直系的直系的直系的直系的直系的直系的直系、直系的直系、直系、直系、直系、直系、直系、直系、直系、直系、直系、直系、直系、直系、直系、直系、直系、直系、直系、直系、直系、直系的直系的直系的直系的直系的直系的直系的直系的直系的直系的直系的

0
下载
关闭预览

相关内容

专知会员服务
52+阅读 · 2020年9月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
0+阅读 · 2022年4月16日
Prefix-Free Coding for LQG Control
Arxiv
0+阅读 · 2022年4月15日
Arxiv
0+阅读 · 2022年4月14日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员