In plane-wave imaging, multiple unfocused ultrasound waves are transmitted into a medium of interest from different angles and an image is formed from the recorded reflections. The number of plane waves used leads to a trade-off between frame-rate and image quality, with single-plane-wave (SPW) imaging being the fastest possible modality with the worst image quality. Recently, deep learning methods have been proposed to improve ultrasound imaging. One approach is to use image-to-image networks that work on the formed image and another is to directly learn a mapping from data to an image. Both approaches utilize purely data-driven models and require deep, expressive network architectures, combined with large numbers of training samples to obtain good results. Here, we propose a data-to-image architecture that incorporates a wave-physics-based image formation algorithm in-between deep convolutional neural networks. To achieve this, we implement the Fourier (FK) migration method as network layers and train the whole network end-to-end. We compare our proposed data-to-image network with an image-to-image network in simulated data experiments, mimicking a medical ultrasound application. Experiments show that it is possible to obtain high-quality SPW images, almost similar to an image formed using 75 plane waves over an angular range of $\pm$16$^\circ$. This illustrates the great potential of combining deep neural networks with physics-based image formation algorithms for SPW imaging.


翻译:在飞机波成像中,多个没有焦点的超声波从不同角度传送到一个令人感兴趣的媒体,并且从记录反射中形成图像。使用的飞机波数量导致框架率和图像质量之间的权衡,而单机波成像是最快的可能模式,图像质量最差。最近,提出了改进超声成像的深层学习方法。一种方法是使用在成像上工作的图像到图像网络,另一种方法是直接从数据到图像的绘图。两种方法都使用纯数据驱动模型,需要深度、直观的网络结构,加上大量的培训样本以获得良好结果。我们在此提议建立一个数据到图像结构,在深层革命神经网络中采用以波物理为基础的图像形成算法。为了实现这一目标,我们采用了Fourier(FK)迁移方法,作为以网络为基础的数据层次,并培训整个网络的终端到终端。我们将拟议的数据到图像网络与一个图像到图像的深度、清晰的网络加以对比,同时结合大量培训模型的图像的模型和图像的模型化成像性图像模型, 模拟的模型将显示75图像的模型成像程的模型成像程图。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
深度学习搜索,Exploring Deep Learning for Search
专知会员服务
58+阅读 · 2020年5月9日
专知会员服务
60+阅读 · 2020年3月19日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
【资源】语音增强资源集锦
专知
8+阅读 · 2020年7月4日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Learning to See Through Obstructions
Arxiv
7+阅读 · 2020年4月2日
Arxiv
5+阅读 · 2018年10月11日
Image Captioning based on Deep Reinforcement Learning
Deep Learning
Arxiv
6+阅读 · 2018年8月3日
Arxiv
5+阅读 · 2018年5月31日
VIP会员
相关资讯
【资源】语音增强资源集锦
专知
8+阅读 · 2020年7月4日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员