Synthetic Aperture Radar (SAR) images are prone to be contaminated by noise, which makes it very difficult to perform target recognition in SAR images. Inspired by great success of very deep convolutional neural networks (CNNs), this paper proposes a robust feature extraction method for SAR image target classification by adaptively fusing effective features from different CNN layers. First, YOLOv4 network is fine-tuned to detect the targets from the respective MF SAR target images. Second, a very deep CNN is trained from scratch on the moving and stationary target acquisition and recognition (MSTAR) database by using small filters throughout the whole net to reduce the speckle noise. Besides, using small-size convolution filters decreases the number of parameters in each layer and, therefore, reduces computation cost as the CNN goes deeper. The resulting CNN model is capable of extracting very deep features from the target images without performing any noise filtering or pre-processing techniques. Third, our approach proposes to use the multi-canonical correlation analysis (MCCA) to adaptively learn CNN features from different layers such that the resulting representations are highly linearly correlated and therefore can achieve better classification accuracy even if a simple linear support vector machine is used. Experimental results on the MSTAR dataset demonstrate that the proposed method outperforms the state-of-the-art methods.


翻译:合成孔径雷达(SAR)图像很容易受到噪音的污染,这使得很难在合成孔径雷达图像中进行目标识别。在非常深层神经神经神经网络(CNN)的巨大成功激励下,本文件提出一种强健的合成孔径雷达图像目标分类特征提取方法,通过对来自CNN不同层的有效特征进行适应性引信操作。首先,YOLOv4网络进行微调,以检测来自各自MFSAR目标图像的目标。第二,一个非常深的CNN数据库从零开始就移动和固定目标获取和识别(MSTAR)数据库进行培训,在整个网络中使用小型过滤器来减少闪烁的噪音。此外,使用小型相动过滤器减少每个层的参数数量,从而随着CNNCN越深,降低计算成本。由此产生的CNN模型能够从目标图像中提取非常深的特征,而无需使用任何噪声过滤或预处理技术。第三,我们的方法是利用多角度关联分析(MCA)从不同层对CNN特征进行适应性学习,这样,因此产生的显示显示其表现为高度线性相关联,因此,因此,如果在使用的M-M-ROFS-S-S-S-S-S-S-格式上的拟议方法能够更精确地显示,那么,那么,那么,那么,那么,那么,那么,那么,那么,那么,那么,那么,那么,那么,那么,那么,那么,就使用的系统-M-S-s-ROD-S-s-s-s-s-s-smal-s-s-smal-smal-s-s-s-smal-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-smal-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s

0
下载
关闭预览

相关内容

边缘机器学习,21页ppt
专知会员服务
81+阅读 · 2021年6月21日
专知会员服务
44+阅读 · 2020年10月31日
【微众银行】联邦学习白皮书_v2.0,48页pdf,
专知会员服务
165+阅读 · 2020年4月26日
专知会员服务
159+阅读 · 2020年1月16日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
哇~这么Deep且又轻量的Network,实时目标检测
计算机视觉战队
7+阅读 · 2018年8月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
Arxiv
0+阅读 · 2021年12月29日
Arxiv
5+阅读 · 2021年6月3日
Arxiv
31+阅读 · 2021年3月29日
Arxiv
5+阅读 · 2019年11月22日
Dynamic Transfer Learning for Named Entity Recognition
Arxiv
3+阅读 · 2018年12月13日
Arxiv
15+阅读 · 2018年2月4日
VIP会员
相关资讯
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
哇~这么Deep且又轻量的Network,实时目标检测
计算机视觉战队
7+阅读 · 2018年8月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
Top
微信扫码咨询专知VIP会员