The inclusion of the sensing functionality in the coming generations of cellular networks, necessitates a rethink of dense cell deployments. In this paper, we analyze and optimize dense cell topologies for dual-functional radar-communication (DFRC) cellular networks. With the aid of tools from stochastic geometry, we derive new analytical expressions of the potential spectral efficiencies in (bit/sec/m^{2}) of radar and communication systems. Based on the new formulations of the potential spectral efficiencies, the energy efficiency (bit/Joule) of DFRC systems is provided in a tractable closed-form formula. Then, an optimization problem to obtain the optimal base station (BS) density that maximizes the network-level energy efficiency is formulated and investigated. In this regard, the mathematical expression of the energy efficiency is shown to be a uni-modal and concave function in the density of the BSs. Therefore, optimal density of the BSs that maximizes the energy efficiency can be obtained. Our analytical and numerical results demonstrate that the inclusion of the sensing functionality clearly differentiates the optimal BS topologies for the DFRC systems against classical communication-only systems.
翻译:将感测功能纳入下一代蜂窝网络,需要重新思考密集的细胞部署。在本文件中,我们分析并优化双功能雷达通信(DFRC)蜂窝网络的密集细胞表层。借助来自随机几何学的工具,我们从雷达和通信系统的密度(bit/sec/m ⁇ 2})中获取潜在的光谱效率的新分析表达方式。根据潜在光谱效率的新配方,DFRC系统的能源效率(bit/Joule)以可移动的封闭式公式提供。然后,为获得最佳基础站(BS)密度以最大限度地提高网络能效而制定和调查一个优化的问题。在这方面,能源效率的数学表达方式在BS的密度(bts/sec/m ⁇ 2})中被证明是一个单式和组合式的功能。因此,可以取得最佳的BS密度以最大限度地提高能源效率。我们的分析和数字结果显示,遥感功能的包含明确区分DFRC系统相对于古型通信系统的最佳BS表层。