The computation of short paths in graphs with arc lengths is a pillar of graph algorithmics and network science. In a more diverse world, however, not every short path is equally valuable. For the setting where each vertex is assigned to a group (color), we provide a framework to model multiple natural fairness aspects. We seek to find short paths in which the number of occurrences of each color is within some given lower and upper bounds. Among other results, we prove the introduced problems to be computationally intractable (NP-hard and parameterized hard with respect to the number of colors) even in very restricted settings (such as each color should appear with exactly the same frequency), while also presenting an encouraging algorithmic result ("fixed-parameter tractability") related to the length of the sought solution path for the general problem.
翻译:以弧长度图形计算短路径是图形算法和网络科学的柱石。 但是, 在更多样化的世界中, 并不是每一个短路径都具有同等价值。 对于每个顶点被分配到一个组( 颜色) 的设置, 我们提供一个框架来模拟多个自然公平方面。 我们试图找到一个短路径, 其中每种颜色的发生次数都在某个给定的下限和上限之内。 除其他结果外, 我们证明引入的问题在计算上是难以解决的( 硬度和参数在颜色数量上硬化的), 即使在非常受限制的环境下( 比如, 每种颜色应该以完全相同的频率出现), 同时呈现与一般问题所寻求的解决方案路径长度相关的令人鼓舞的算法结果 ( “ 固定参数可移动性 ” ) 。</s>