We show that completeness at higher levels of the theory of the reals is a robust notion (under changing the signature and bounding the domain of the quantifiers). This mends recognized gaps in the hierarchy, and leads to stronger completeness results for various computational problems. We exhibit several families of complete problems which can be used for future completeness results in the real hierarchy. As an application we answer an open question by Jungeblut, Kleist, and Miltzow on the complexity of two semialgebraic sets having Hausdorff distance $0$, and sharpen some results by Burgisser and Cucker.
翻译:我们证明,更高级别真实理论的完整性是一个强有力的概念(正在改变签名和约束量化标准领域 ) 。 这种修补认识到了等级体系中的差距,并导致各种计算问题更加完整的结果。 我们展示了几个完整的问题家族,这些问题可以在未来实现完整性时,在真正的等级体系中产生结果。 作为应用,我们回答了Jungeblut、Kleist和Miltzow提出的一个未决问题,即两套半遗传基因组的复杂性,其距离为Hausdorff $0美元,以及Burgisser和Cucker的一些结果。