This paper addresses the challenge of dynamic multi-objective optimization problems (DMOPs) by introducing novel approaches for accelerating prediction strategies within the evolutionary algorithm framework. Since the objectives of DMOPs evolve over time, both the Pareto optimal set (PS) and the Pareto optimal front (PF) are dynamic. To effectively track the changes in the PS and PF in both decision and objective spaces, we propose an adaptive prediction strategy that incorporates second-order derivatives to predict and adjust the algorithms search behavior. This strategy enhances the algorithm's ability to anticipate changes in the environment, allowing for more efficient population re-initialization. We evaluate the performance of the proposed method against four state-of-the-art algorithms using standard DMOPs benchmark problems. Experimental results demonstrate that the proposed approach significantly outperforms the other algorithms across most test problems.
翻译:暂无翻译