Entropic regularization provides a generalization of the original optimal transport problem. It introduces a penalty term defined by the Kullback-Leibler divergence, making the problem more tractable via the celebrated Sinkhorn algorithm. Replacing the Kullback-Leibler divergence with a general $f$-divergence leads to a natural generalization. Using convex analysis, we extend the theory developed so far to include $f$-divergences defined by functions of Legendre type, and prove that under some mild conditions, strong duality holds, optimums in both the primal and dual problems are attained, the generalization of the $c$-transform is well-defined, and we give sufficient conditions for the generalized Sinkhorn algorithm to converge to an optimal solution. We propose a practical algorithm for computing the regularized optimal transport cost and its gradient via the generalized Sinkhorn algorithm. Finally, we present experimental results on synthetic 2-dimensional data, demonstrating the effects of using different $f$-divergences for regularization, which influences convergence speed, numerical stability and sparsity of the optimal coupling.


翻译:以原始最佳运输问题为主的正规化。 它引入了由 Kullback- Leiber 差异定义的惩罚术语, 使得这一问题通过著名的Sinkhorn 算法更能通过备受关注的 Sinkhorn 运算法更能引起关注。 用普通的 $- divegence 取代 Kullback- Leiber 差异, 导致自然的概括化。 我们利用 convex 分析, 将迄今为止开发的理论扩大到包括由传奇类型函数定义的美元- diverence, 并证明在某些温和条件下, 强烈的双重性存在, 初质和双重问题都达到了最佳性, 美元- Transform的通用性是定义明确的, 我们给通用的 Sinkhorn 算法提供了充分的条件, 使通用的 Sinkhorn 算法能够通过通用的 Sinkhorn 算出正常最佳运输成本及其梯度。 最后, 我们介绍了合成二维数据实验结果, 显示了使用不同的美元调法进行正规化的效果, 影响最佳合并的速度、 数字稳定性和紧缩。

0
下载
关闭预览

相关内容

专知会员服务
45+阅读 · 2021年7月26日
专知会员服务
14+阅读 · 2021年5月21日
【机器学习术语宝典】机器学习中英文术语表
专知会员服务
59+阅读 · 2020年7月12日
专知会员服务
61+阅读 · 2020年3月4日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
7+阅读 · 2020年6月29日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员