Gathering 3D material microstructural information is time-consuming, expensive, and energy-intensive. Acquisition of 3D data has been accelerated by developments in serial sectioning instrument capabilities; however, for crystallographic information, the electron backscatter diffraction (EBSD) imaging modality remains rate limiting. We propose a physics-based efficient deep learning framework to reduce the time and cost of collecting 3D EBSD maps. Our framework uses a quaternion residual block self-attention network (QRBSA) to generate high-resolution 3D EBSD maps from sparsely sectioned EBSD maps. In QRBSA, quaternion-valued convolution effectively learns local relations in orientation space, while self-attention in the quaternion domain captures long-range correlations. We apply our framework to 3D data collected from commercially relevant titanium alloys, showing both qualitatively and quantitatively that our method can predict missing samples (EBSD information between sparsely sectioned mapping points) as compared to high-resolution ground truth 3D EBSD maps.
翻译:获取3D材料微观结构信息是耗时、昂贵且能量密集的。通过串行切片仪器性能的发展,3D数据的获取已经加速; 然而,对于晶体学信息,电子背散射衍射(EBSD)成像方式仍然是限制速度的。我们提出了一种基于物理的高效深度学习框架,以减少收集3D EBSD地图的时间和成本。我们的框架使用了一种四元数残差块自注意力网络(QRBSA),从稀疏切片EBSD地图生成高分辨率3D EBSD地图。在QRBSA中,四元数卷积有效地学习了方向空间中的局部关系,而四元数域中的自我关注捕捉了长程相关性。我们将我们的框架应用于从商业上相关的钛合金收集的3D数据中,定性和定量地表明我们的方法可以预测缺失的样本(稀疏切片映射点之间的EBSD信息),并与高分辨率地面真实3D EBSD地图进行比较。