Mathematical notation, i.e., the writing system used to communicate concepts in mathematics, encodes valuable information for a variety of information search and retrieval systems. Yet, mathematical notations remain mostly unutilized by today's systems. In this paper, we present the first in-depth study on the distributions of mathematical notation in two large scientific corpora: the open access arXiv (2.5B mathematical objects) and the mathematical reviewing service for pure and applied mathematics zbMATH (61M mathematical objects). Our study lays a foundation for future research projects on mathematical information retrieval for large scientific corpora. Further, we demonstrate the relevance of our results to a variety of use-cases. For example, to assist semantic extraction systems, to improve scientific search engines, and to facilitate specialized math recommendation systems. The contributions of our presented research are as follows: (1) we present the first distributional analysis of mathematical formulae on arXiv and zbMATH; (2) we retrieve relevant mathematical objects for given textual search queries (e.g., linking $P_{n}^{(\alpha, \beta)}\!\left(x\right)$ with `Jacobi polynomial'); (3) we extend zbMATH's search engine by providing relevant mathematical formulae; and (4) we exemplify the applicability of the results by presenting auto-completion for math inputs as the first contribution to math recommendation systems. To expedite future research projects, we have made available our source code and data.


翻译:数学符号,即用于交流数学概念的书写系统,为各种信息搜索和检索系统编码了宝贵的信息。然而,数学符号仍然大多被今天的系统所没有使用。在本文中,我们提出了关于数学符号在两个大型科学公司中分布情况的第一次深入研究:开放存取 arXiv (2.5B数学对象) 和纯数学和应用数学 zbMATH(61M数学对象)的数学审评服务。我们的研究为今后关于为大型科学公司检索数学信息研究项目奠定了基础。此外,我们展示了我们的成果与各种使用案例的相关性。例如,协助语义提取系统,改进科学搜索引擎,便利专门的数学推荐系统。我们介绍的研究贡献如下:(1) 我们介绍对纯读和应用数学 zbMATHT(61M数学对象) 和数学数学公式的第一次分配分析;(2) 我们检索相关的数学符号搜索源(例如,将 $P ⁇ _Q_Q\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
专知会员服务
76+阅读 · 2021年3月16日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
计算机 | IUI 2020等国际会议信息4条
Call4Papers
6+阅读 · 2019年6月17日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年8月23日
Physical Primitive Decomposition
Arxiv
4+阅读 · 2018年9月13日
VIP会员
相关VIP内容
专知会员服务
76+阅读 · 2021年3月16日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
相关资讯
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
计算机 | IUI 2020等国际会议信息4条
Call4Papers
6+阅读 · 2019年6月17日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员