A model of interacting agents, following plausible behavioral rules into a world where the Covid-19 epidemic is affecting the actions of everyone. The model works with (i) infected agents categorized as symptomatic or asymptomatic and (ii) the places of contagion specified in a detailed way. The infection transmission is related to three factors: the characteristics of both the infected person and the susceptible one, plus those of the space in which contact occurs. The model includes the structural data of Piedmont, an Italian region, but we can easily calibrate it for other areas. The micro-based structure of the model allows factual, counterfactual, and conditional simulations to investigate both the spontaneous or controlled development of the epidemic. The model is generative of complex epidemic dynamics emerging from the consequences of agents' actions and interactions, with high variability in outcomes and stunning realistic reproduction of the successive contagion waves in the reference region. There is also an inverse generative side of the model, coming from the idea of using genetic algorithms to construct a meta-agent to optimize the vaccine distribution. This agent takes into account groups' characteristics -- by age, fragility, work conditions -- to minimize the number of symptomatic people.
翻译:一种互动物剂的模式,它遵循一种合理的行为规则,进入一个Covid-19流行病正在影响每个人行动的世界。该模式与(一) 被感染物剂分类为症状性或无症状性,以及(二) 详细指定的传染地点有关。感染传播与三个因素有关:受感染者和易受感染者的特点,加上接触空间的特征。该模式包括意大利地区Piedmont的结构数据,但我们可以很容易地将其校准为其他地区。该模型的微观结构允许进行事实、反事实和有条件的模拟,以调查该流行病的自发或控制发展。该模型是因制剂行为和相互作用的后果而出现的复杂流行病动态的基因,其结果变化很大,并且令人惊异地实际复制了参照地区的连续的传染波。该模型还有一个反向的基因描述面,它来自利用基因算法来构建元剂以优化疫苗分配的理念。该模型的微观结构考虑到各个群体的特点 -- 按年龄、脆弱性、工作条件 -- -- 尽量减少症状的数量。