Single species population models and discrete stochastic gene frequency models are two standards of mathematical biology important for the evolution of populations. An agent based model is presented which reproduces these models and then explores where these models agree and disagree under relaxed specifications. For the population models, the requirement of homogeneous mixing prevents prediction of extinctions due to local resource depletion. These models also suggest equilibrium based on attainment of constant population levels though underlying population characteristics may be nowhere close to equilibrium. The discrete stochastic gene frequency models assume well mixed populations at constant levels. The models' predictions for non-constant populations in strongly oscillating and chaotic regimes are surprisingly good, only diverging from the ABM at the most chaotic levels.


翻译:单一物种群模型和离散随机基因频率模型是对于人口演变十分重要的两种数学生物学标准; 以物剂为基础的模型复制了这些模型,然后根据宽松的规格探索这些模型的一致和不一致之处; 就人口模型而言,要求同质混合无法预测当地资源耗竭导致的灭绝; 这些模型还表明,在达到恒定人口水平的基础上实现平衡,尽管潜在的人口特征可能离均衡还很近; 离散随机基因频率模型假定,不同程度的基因频率模型显示,不同群体在恒定水平上相当混杂; 模型对高度振动和混乱的制度中非同质种群的预测令人惊讶地好,仅在最混乱的层次上与反弹道导弹不同。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
专知会员服务
29+阅读 · 2021年9月30日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【经典书】统计学习导论,434页pdf,斯坦福大学
专知会员服务
234+阅读 · 2020年4月29日
专知会员服务
60+阅读 · 2020年3月19日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Nature 一周论文导读 | 2019 年 8 月 22 日
科研圈
4+阅读 · 2019年9月1日
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
Nature 一周论文导读 | 2019 年 2 月 28 日
科研圈
13+阅读 · 2019年3月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年10月14日
Arxiv
0+阅读 · 2021年10月13日
Arxiv
0+阅读 · 2021年10月13日
Arxiv
30+阅读 · 2021年8月18日
VIP会员
相关VIP内容
专知会员服务
29+阅读 · 2021年9月30日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【经典书】统计学习导论,434页pdf,斯坦福大学
专知会员服务
234+阅读 · 2020年4月29日
专知会员服务
60+阅读 · 2020年3月19日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
Nature 一周论文导读 | 2019 年 8 月 22 日
科研圈
4+阅读 · 2019年9月1日
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
Nature 一周论文导读 | 2019 年 2 月 28 日
科研圈
13+阅读 · 2019年3月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员