Group convolutions and cross-correlations, which are equivariant to the actions of group elements, are commonly used in mathematics to analyze or take advantage of symmetries inherent in a given problem setting. Here, we provide efficient quantum algorithms for performing linear group convolutions and cross-correlations on data stored as quantum states. Runtimes for our algorithms are logarithmic in the dimension of the group thus offering an exponential speedup compared to classical algorithms when input data is provided as a quantum state and linear operations are well conditioned. Motivated by the rich literature on quantum algorithms for solving algebraic problems, our theoretical framework opens a path for quantizing many algorithms in machine learning and numerical methods that employ group operations.


翻译:组变和交叉关系是群体元素行动的等值,通常用于数学分析或利用特定问题设置中固有的对称。在这里,我们提供高效的量子算法,用于进行线性群变和以量子状态储存的数据的交叉对称。我们算法的运行时间在组的维度上是对数,因此在提供量子状态和线性操作条件良好的情况下,与古典算法相比,可以加速指数化速度。根据关于解决代数问题的量子算法的丰富文献,我们的理论框架开辟了在机器学习中量化许多算法和采用组操作的数字方法的途径。

0
下载
关闭预览

相关内容

Group一直是研究计算机支持的合作工作、人机交互、计算机支持的协作学习和社会技术研究的主要场所。该会议将社会科学、计算机科学、工程、设计、价值观以及其他与小组工作相关的多个不同主题的工作结合起来,并进行了广泛的概念化。官网链接:https://group.acm.org/conferences/group20/
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
已删除
将门创投
6+阅读 · 2019年4月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
8+阅读 · 2021年2月19日
Arxiv
9+阅读 · 2020年10月29日
Pointer Graph Networks
Arxiv
7+阅读 · 2020年6月11日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
已删除
将门创投
6+阅读 · 2019年4月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员