We present a novel method for graph partitioning, based on reinforcement learning and graph convolutional neural networks. The new reinforcement learning based approach is used to refine a given partitioning obtained on a coarser representation of the graph, and the algorithm is applied recursively. The neural network is implemented using graph attention layers, and trained using an advantage actor critic (A2C) agent. We present two variants, one for finding an edge separator that minimizes the normalized cut or quotient cut, and one that finds a small vertex separator. The vertex separators are then used to construct a nested dissection ordering for permuting a sparse matrix so that its triangular factorization will incur less fill-in. The partitioning quality is compared with partitions obtained using METIS and Scotch, and the nested dissection ordering is evaluated in the sparse solver SuperLU. Our results show that the proposed method achieves similar partitioning quality than METIS and Scotch. Furthermore, the method generalizes from one class of graphs to another, and works well on a variety of graphs from the SuiteSparse sparse matrix collection.
翻译:我们提出了一个基于强化学习和图形进化神经网络的图表分割新方法。 新的强化学习法用于完善在图表粗剖面上获得的指定分割法, 并反复应用算法。 神经网络使用图形关注层实施, 并使用一个优势的演员评论家( A2C) 代理进行训练。 我们提出两个变量, 一个用于寻找边缘分隔器, 以尽可能减少正常切分或商分解, 并找到一个小的顶部分隔器。 然后, 顶部分隔器用于为一个稀疏的矩阵构造嵌入解剖, 以便其三角因子分解处理较少。 分割质量与使用METIS 和 苏格兰 获得的分区比较, 嵌入解剖顺序在稀薄的溶剂超级LU 中进行评估。 我们的结果显示, 拟议的方法与METIS 和苏格兰 相类似。 此外,, 将一个图表从一个类别到另一个类别的方法加以概括化, 并且对来自 ASuplass 矩阵收藏的各种图表进行精密的绘制图。