Highest density regions refer to level sets containing points of relatively high density. Their estimation from a random sample, generated from the underlying density, allows to determine the clusters of the corresponding distribution. This task can be accomplished considering different nonparametric perspectives. From a practical point of view, reconstructing highest density regions can be interpreted as a way of determining hot-spots, a crucial task for understanding COVID-19 space-time evolution. In this work, we compare the behavior of classical plug-in methods and a recently proposed hybrid algorithm for highest density regions estimation through an extensive simulation study. Both methodologies are applied to analyze a real data set about COVID-19 cases in the United States.
翻译:高密度区域是指包含相对高密度点的层组。 由根密度产生的随机抽样估计,可以确定相应分布的组群。 这项任务可以考虑到不同的非参数角度来完成。 从实际的角度来看,重建最高密度区域可以被解释为一种确定热点的方法,这是了解COVID-19时空演变的关键任务。 在这项工作中,我们通过广泛的模拟研究,比较了古典插头法和最近提出的最高密度区域估计混合算法的行为。这两种方法都用于分析美国COVID-19案件的真实数据集。