The prime challenge in unsupervised domain adaptation (DA) is to mitigate the domain shift between the source and target domains. Prior DA works show that pretext tasks could be used to mitigate this domain shift by learning domain invariant representations. However, in practice, we find that most existing pretext tasks are ineffective against other established techniques. Thus, we theoretically analyze how and when a subsidiary pretext task could be leveraged to assist the goal task of a given DA problem and develop objective subsidiary task suitability criteria. Based on this criteria, we devise a novel process of sticker intervention and cast sticker classification as a supervised subsidiary DA problem concurrent to the goal task unsupervised DA. Our approach not only improves goal task adaptation performance, but also facilitates privacy-oriented source-free DA i.e. without concurrent source-target access. Experiments on the standard Office-31, Office-Home, DomainNet, and VisDA benchmarks demonstrate our superiority for both single-source and multi-source source-free DA. Our approach also complements existing non-source-free works, achieving leading performance.


翻译:在未受监督的领域适应(DA)中,首要挑战在于减轻源和目标领域之间的域转移。前DA工作表明,可以使用借口任务来通过学习差异表来减轻这一域的转移。然而,在实践中,我们发现,大多数现有借口任务与其他既定技术相比是无效的。因此,我们从理论上分析如何和何时利用辅助借口任务来协助特定DA问题的目标任务,并制定客观的辅助任务适合性标准。根据这一标准,我们设计了一个新的程序,即粘贴干预,并贴贴标签,作为受监督的附属DA问题,与目标任务未受监督的DA同时发生。我们的方法不仅改进了目标任务适应性业绩,而且还促进了面向隐私的无源DA(即没有同时进入源目标),对标准办公室31、办公室总部、DomainNet和VisDA基准的实验表明,我们优于单一来源和多来源无源的DA。我们的方法还补充了现有的非源工作,取得了领先的业绩。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
Arxiv
16+阅读 · 2021年7月18日
Arxiv
10+阅读 · 2017年7月4日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
Top
微信扫码咨询专知VIP会员