Feature extraction and matching are the basic parts of many computer vision tasks, such as 2D or 3D object detection, recognition, and registration. As we all know, 2D feature extraction and matching have already been achieved great success. Unfortunately, in the field of 3D, the current methods fail to support the extensive application of 3D LiDAR sensors in vision tasks, due to the poor descriptiveness and inefficiency. To address this limitation, we propose a novel 3D feature representation method: Linear Keypoints representation for 3D LiDAR point cloud, called LinK3D. The novelty of LinK3D lies in that it fully considers the characteristics (such as sparsity, complexity of scenarios) of LiDAR point cloud, and represents current keypoint with its robust neighbor keypoints, which provide strong constraint on the description of current keypoint. The proposed LinK3D has been evaluated on two public datasets (i.e., KITTI, Steven VLP16), and the experimental results show that our method greatly outperforms the state-of-the-arts in matching performance. More importantly, LinK3D shows excellent real-time performance (based on the frequence 10 Hz of LiDAR). LinK3D only takes an average of 32 milliseconds to extract features from the point cloud collected by a 64-ray laser beam, and takes merely about 8 milliseconds to match two LiDAR scans when executed in a notebook with an Intel Core i7 @2.2 GHz processor. Moreover, our method can be widely extended to a variety of 3D vision applications. In this paper, we has applied our LinK3D to 3D registration, LiDAR odometry and place recognition tasks, and achieved competitive results compared with the state-of-the-art methods.


翻译:功能提取和匹配是许多计算机视觉任务的基本部分, 如 2D 或 3D 对象检测、 识别和注册。 众所周知, 2D 特征提取和匹配已经取得了巨大成功 。 不幸的是, 在 3D 领域, 目前的方法无法支持在视觉任务中广泛应用 3D LiDAR 传感器。 为解决这一限制, 我们提议了一个新型的 3D 特征代表法: 3D LiD2.2 点云的线性基点代表, 称为 LinK3D 。 林K3D 的新颖在于它充分考虑利D 点云的特性( 如 屏幕性、 情景的复杂性), 并且代表着当前关键点, 因为它的周围关键点对当前关键点的描述有强烈的制约 。 拟议的 LinK3D 在两个公开的激光数据集( 如 KITTI、 Steve VLPP16) 上, 实验结果显示, 我们的方法在匹配性运行的状态中大大优于状态应用 3D 。 。 林K 3D 显示, 平均的性运行到 。 在 3D 上, 只有 的 的 3D 以 以 3D 以 3D 水平 以 以 的 的 3D 3D 的 以 以 的 的 度 的 的 度 的 以 的 的 的 3D 的 的 的 向为 。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
13+阅读 · 2019年11月14日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员