Knowledge-based leader-following synchronization problem of heterogeneous nonlinear multi-agent systems is challenging since the leader's dynamic information is unknown to all follower nodes. This paper proposes a learning-based fully distributed observer for a class of nonlinear leader systems, which can simultaneously learn the leader's dynamics and states. The class of leader dynamics considered here does not require a bounded Jacobian matrix. Based on this learning-based distributed observer, we further synthesize an adaptive distributed control law for solving the leader-following synchronization problem of multiple Euler-Lagrange systems subject to an uncertain nonlinear leader system. The results are illustrated by a simulation example.
翻译:以知识为基础的领导者跟踪不同非线性多试剂系统的同步问题具有挑战性,因为所有追随者节点都不了解领导者的动态信息。 本文提议为一组非线性领导系统提供一个基于学习的分布齐全的观察员,这些非线性领导系统可以同时学习领导者的动态和状态。 这里所考虑的领导动态类别不需要一个捆绑的Jacobian矩阵。 基于这个以学习为基础的分布式观察员,我们进一步综合了适应性分布式控制法,以解决多个ELLagrange系统在服从不确定的非线性领导系统情况下的领导者跟踪同步问题。 模拟示例了结果。