Recently, deep neural networks (DNNs) have shown advantages in accelerating optimization algorithms. One approach is to unfold finite number of iterations of conventional optimization algorithms and to learn parameters in the algorithms. However, these are forward methods and are indeed neither iterative nor convergent. Here, we present a novel DNN-based convergent iterative algorithm that accelerates conventional optimization algorithms. We train a DNN to yield parameters in scaled gradient projection method. So far, these parameters have been chosen heuristically, but have shown to be crucial for good empirical performance. In simulation results, the proposed method significantly improves the empirical convergence rate over conventional optimization methods for various large-scale inverse problems in image processing.


翻译:最近,深神经网络(DNNs)在加速优化算法方面展示了优势。 一种方法是开发常规优化算法的有限迭代数,并在算法中学习参数。 但是,这些是前期方法,实际上既不迭接,也不融合。 在这里,我们展示了一个新的基于 DNN 的聚合迭代算法,加速常规优化算法。 我们训练了一个 DNN 以缩放梯度投影法生成参数。 到目前为止,这些参数是超常选择的,但已证明对良好的实证性表现至关重要。 在模拟结果中,拟议方法大大改善了图像处理中各种大反向问题的常规优化方法的经验趋同率。

0
下载
关闭预览

相关内容

专知会员服务
45+阅读 · 2020年10月31日
深度学习搜索,Exploring Deep Learning for Search
专知会员服务
60+阅读 · 2020年5月9日
深度强化学习策略梯度教程,53页ppt
专知会员服务
180+阅读 · 2020年2月1日
过参数化、剪枝和网络结构搜索
极市平台
17+阅读 · 2019年11月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
CVPR2018 | Decoupled Networks
极市平台
4+阅读 · 2019年3月22日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年6月5日
Arxiv
7+阅读 · 2020年6月29日
VIP会员
相关资讯
过参数化、剪枝和网络结构搜索
极市平台
17+阅读 · 2019年11月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
CVPR2018 | Decoupled Networks
极市平台
4+阅读 · 2019年3月22日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员