Finding anomalous snapshots from a graph has garnered huge attention recently. Existing studies address the problem using shallow learning mechanisms such as subspace selection, ego-network, or community analysis. These models do not take into account the multifaceted interactions between the structure and attributes in the network. In this paper, we propose GraphAnoGAN, an anomalous snapshot ranking framework, which consists of two core components -- generative and discriminative models. Specifically, the generative model learns to approximate the distribution of anomalous samples from the candidate set of graph snapshots, and the discriminative model detects whether the sampled snapshot is from the ground-truth or not. Experiments on 4 real-world networks show that GraphAnoGAN outperforms 6 baselines with a significant margin (28.29% and 22.01% higher precision and recall, respectively compared to the best baseline, averaged across all datasets).


翻译:从图表中寻找异常的快照最近引起了极大的关注。 现有的研究利用子空间选择、自我网络或社区分析等浅度学习机制来解决这个问题。 这些模型没有考虑到网络结构和属性之间的多方面互动。 在本文中,我们提议GreaphAnoGAN, 一个异常的快照排名框架, 由两个核心组成部分组成: 基因化和歧视性模型。 具体地说, 基因化模型学会了从候选的图样集中大致分配异常样本, 歧视模型检测了抽样的快照是否来自地面真相。 四个真实世界网络的实验显示, GraphAnoGAN 超越了6个基线, 且有相当大的边际( 28.29% 和 22.01% ), 并且回顾,与所有数据集的最佳基线相比, 平均值分别为28.9% 和 22.01% 。

0
下载
关闭预览

相关内容

专知会员服务
44+阅读 · 2020年10月31日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
异常检测(Anomaly Detection)综述
极市平台
20+阅读 · 2020年10月24日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年8月30日
Arxiv
6+阅读 · 2021年3月11日
Anomalous Instance Detection in Deep Learning: A Survey
Arxiv
5+阅读 · 2018年5月16日
Arxiv
3+阅读 · 2017年5月14日
VIP会员
相关资讯
异常检测(Anomaly Detection)综述
极市平台
20+阅读 · 2020年10月24日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Top
微信扫码咨询专知VIP会员