Finding anomalous snapshots from a graph has garnered huge attention recently. Existing studies address the problem using shallow learning mechanisms such as subspace selection, ego-network, or community analysis. These models do not take into account the multifaceted interactions between the structure and attributes in the network. In this paper, we propose GraphAnoGAN, an anomalous snapshot ranking framework, which consists of two core components -- generative and discriminative models. Specifically, the generative model learns to approximate the distribution of anomalous samples from the candidate set of graph snapshots, and the discriminative model detects whether the sampled snapshot is from the ground-truth or not. Experiments on 4 real-world networks show that GraphAnoGAN outperforms 6 baselines with a significant margin (28.29% and 22.01% higher precision and recall, respectively compared to the best baseline, averaged across all datasets).
翻译:从图表中寻找异常的快照最近引起了极大的关注。 现有的研究利用子空间选择、自我网络或社区分析等浅度学习机制来解决这个问题。 这些模型没有考虑到网络结构和属性之间的多方面互动。 在本文中,我们提议GreaphAnoGAN, 一个异常的快照排名框架, 由两个核心组成部分组成: 基因化和歧视性模型。 具体地说, 基因化模型学会了从候选的图样集中大致分配异常样本, 歧视模型检测了抽样的快照是否来自地面真相。 四个真实世界网络的实验显示, GraphAnoGAN 超越了6个基线, 且有相当大的边际( 28.29% 和 22.01% ), 并且回顾,与所有数据集的最佳基线相比, 平均值分别为28.9% 和 22.01% 。