As one of the basic tasks of computer vision, object detection has been widely used in many intelligent applications. However, object detection algorithms are usually heavyweight in computation, hindering their implementations on resource-constrained edge devices. Current edge-cloud collaboration methods, such as CNN partition over Edge-cloud devices, are not suitable for object detection since the huge data size of the intermediate results will introduce extravagant communication costs. To address this challenge, we propose a small-big model framework that deploys a big model in the cloud and a small model on the edge devices. Upon receiving data, the edge device operates a difficult-case discriminator to classify the images into easy cases and difficult cases according to the specific semantics of the images. The easy cases will be processed locally at the edge, and the difficult cases will be uploaded to the cloud. Experimental results on the VOC, COCO, HELMET datasets using two different object detection algorithms demonstrate that the small-big model system can detect 94.01%-97.84% of objects with only about 50% images uploaded to the cloud when using SSD. In addition, the small-big model averagely reaches 91.22%- 92.52% end-to-end mAP of the scheme that uploading all images to the cloud.
翻译:作为计算机视觉的基本任务之一,物体探测在许多智能应用中被广泛使用。 但是, 物体探测算法通常在计算中重量过重, 阻碍在资源限制的边缘设备上实施。 当前的边缘波纹合作方法, 如CNN在边缘- 球球装置上的分割器, 不适合天体探测, 因为中间结果的巨大数据大小将带来超高的通信成本。 为了应对这一挑战, 我们提议了一个小型的模型框架, 在云中部署一个大模型, 在边缘装置上部署一个小模型。 接收数据后, 边缘装置会操作一个困难的区分器, 以便根据图像的具体语义将图像分类为简单案例和困难案例。 简单案例将在边缘进行本地处理, 困难案例会被上传到云层。 VOC、 COCO、 HELMET 数据集的实验结果显示, 小型模型系统可以探测94.01%- 97. 84%的物体, 在使用 SDD时, 只能将大约50%的图像上传到云层。 此外, 小型- AP 平均计划 将小型- 22 的图像升至最后 。