This paper presents general bounds on the highest achievable rate for list-decodable insertion-deletion codes. In particular, we give novel outer and inner bounds for the highest achievable communication rate of any insertion-deletion code that can be list-decoded from any $\gamma$ fraction of insertions and any $\delta$ fraction of deletions. Our bounds simultaneously generalize the known bounds for the previously studied special cases of insertion-only, deletion-only, and zero-rate and correct other bounds that had been reported for the general case.
翻译:本文件介绍了关于列表-可减号插入-删除代码最高可实现比率的一般界限,特别是,我们给任何插入-删除代码中可以从插入中任何美元分数和删除中任何美元分数中划出的任何插入-删除代码的最高可实现通信率提供了新的外部和内部界限。我们同时对以往研究的仅插入、仅删除、零率和正确其他特定案例的已知界限作了概括,这些特例是只插入、仅删除、零率和仅报告的一般案例。