The extended persistence diagram is an invariant of piecewise linear functions, which is known to be stable under perturbations of functions with respect to the bottleneck distance as introduced by Cohen-Steiner, Edelsbrunner, and Harer. We address the question of universality, which asks for the largest possible stable distance on extended persistence diagrams, showing that a more discriminative variant of the bottleneck distance is universal. Our result applies more generally to settings where persistence diagrams are considered only up to a certain degree. We achieve our results by establishing a functorial construction and several characteristic properties of relative interlevel set homology, which mirror the classical Eilenberg--Steenrod axioms. Finally, we contrast the bottleneck distance with the interleaving distance of sheaves on the real line by showing that the latter is not intrinsic, let alone universal. This particular result has the further implication that the interleaving distance of Reeb graphs is not intrinsic either.
翻译:延长的持久性图是片形线性函数的变异性, 据知在科恩-史蒂纳、埃德尔布龙纳和哈雷尔引入的瓶颈距离功能的扰动下,这种功能是稳定的。 我们处理普遍性问题,它要求在延长的持久性图上尽可能保持最大的稳定距离,表明瓶颈距离的更具有歧视性的变种是普遍性的。 我们的结果更普遍地适用于持续性图仅被某种程度地考虑的环境。 我们通过建立复式构造和相对的等级间定同质学的若干特征来取得我们的结果,这些特征反映了古典的艾伦贝-斯蒂恩格正对等现象。 最后,我们用真实线上的缓冲距离来对比瓶形距离,显示后者不是内在的,更不用说普遍性的。 这一特定结果还进一步暗示Reeb图的内径距离并非内在的。