Multivariate regression models and ANOVA are probably the most frequently applied methods of all statistical analyses. We study the case where the predictors are qualitative variables, and the response variable is quantitative. In this case, we propose an alternative to the classic approaches that does not assume homoscedasticity but assumes that a Markov chain can describe the covariates' correlations. This approach transforms the dependent covariates using a change of measure to independent covariates. The transformed estimates allow a pairwise comparison of the mean and variance of the contribution of different values of the covariates. We show that under standard moment conditions, the estimators are asymptotically normally distributed. We test our method with data from simulations and apply it to several classic data sets.
翻译:多变量回归模型和 ANOVA 可能是所有统计分析中最经常采用的方法。 我们研究了预测器是定性变量的情况, 反应变量是定量的。 在此情况下, 我们提出一个替代经典方法的替代方法, 不假设同质性, 但假设一个 Markov 链可以描述共变量的关联。 这种方法将依赖性共变转换为独立的共变。 改变后的估算可以对共变变量不同值贡献的平均值和差异进行对等比较。 我们显示, 在标准时刻条件下, 估计器通常会以静态方式分布。 我们用模拟数据测试我们的方法, 并将其应用于几个经典数据集 。