Automatically selecting the best performing algorithm for a given dataset or ranking multiple algorithms by their expected performance supports users in developing new machine learning applications. Most approaches for this problem rely on pre-computed dataset meta-features and landmarking performances to capture the salient topology of the datasets and those topologies that the algorithms attend to. Landmarking usually exploits cheap algorithms not necessarily in the pool of candidate algorithms to get inexpensive approximations of the topology. While somewhat indicative, hand-crafted dataset meta-features and landmarks are likely insufficient descriptors, strongly depending on the alignment of the topologies that the landmarks and the candidate algorithms search for. We propose IMFAS, a method to exploit multi-fidelity landmarking information directly from the candidate algorithms in the form of non-parametrically non-myopic meta-learned learning curves via LSTMs in a few-shot setting during testing. Using this mechanism, IMFAS jointly learns the topology of the datasets and the inductive biases of the candidate algorithms, without the need to expensively train them to convergence. Our approach produces informative landmarks, easily enriched by arbitrary meta-features at a low computational cost, capable of producing the desired ranking using cheaper fidelities. We additionally show that IMFAS is able to beat Successive Halving with at most 50% of the fidelity sequence during test time.
翻译:自动选择特定数据集的最佳操作算法, 或根据预期性能排序多个算法, 支持用户开发新的机器学习应用程序。 这一问题的多数方法都依赖于预编数据集元元功能和里程碑式性功能的匹配, 以捕捉数据集的显著地形学和算法所关注的这些地形学。 定位通常使用廉价算法, 不一定在候选算法的集合中进行廉价算法, 以获得低廉的地形近似于地形学。 虽然在某种程度上, 手工制作的数据集的超常和里程碑性能可能不够充分, 在很大程度上取决于里程碑和候选算法所搜索的地形学的匹配。 我们提出IMFAS, 一种直接从候选算法中获取多真异性标志性标志性信息的方法, 以非偏差非显性非显性非显性非显微的元学学习曲线的形式, 在测试期间以几张眼光的方式通过LSTMMMS获得更低的近似近似近似近似近似近似近。 IMFAS, 联合学习数据集的表象学和候选算法的直观偏差偏差偏差,,,, 在50 IMFAS AS 方法中不需要以最容易地进行高标准性地标准级化的精确性测算方法,,,, 将它能的排序法化地进行着地进行更精确性地的精确性地计算,,, 的精确性地计算方法,,,,, 使我们性测测算法,,,, 性地,,我们性地,我们性地,, 制的更难性地, 使 性地,我们用我们用我们所 性地, 性地, 性地, 性地, 性地, 性地, 性地, 性地, 性地, 性地性地, 性地性地, 性地, 性地性地性地性地性地性地性地性地性地性地性地性地性地性地性地性地性地性地性地性地性地性地性地性地性地性地性地性地性地性地性地性地性地性地性