This work studies the entropic regularization formulation of the 2-Wasserstein distance on an infinite-dimensional Hilbert space, in particular for the Gaussian setting. We first present the Minimum Mutual Information property, namely the joint measures of two Gaussian measures on Hilbert space with the smallest mutual information are joint Gaussian measures. This is the infinite-dimensional generalization of the Maximum Entropy property of Gaussian densities on Euclidean space. We then give closed form formulas for the optimal entropic transport plan, entropic 2-Wasserstein distance, and Sinkhorn divergence between two Gaussian measures on a Hilbert space, along with the fixed point equations for the barycenter of a set of Gaussian measures. Our formulations fully exploit the regularization aspect of the entropic formulation and are valid both in singular and nonsingular settings. In the infinite-dimensional setting, both the entropic 2-Wasserstein distance and Sinkhorn divergence are Fr\'echet differentiable, in contrast to the exact 2-Wasserstein distance, which is not differentiable. Our Sinkhorn barycenter equation is new and always has a unique solution. In contrast, the finite-dimensional barycenter equation for the entropic 2-Wasserstein distance fails to generalize to the Hilbert space setting. In the setting of reproducing kernel Hilbert spaces (RKHS), our distance formulas are given explicitly in terms of the corresponding kernel Gram matrices, providing an interpolation between the kernel Maximum Mean Discrepancy (MMD) and the kernel 2-Wasserstein distance.
翻译:这项工作研究无限维度 Hilbert 空间的 2 - Wasserstein 距离的星体正规化配方, 特别是 Gaussian 设置 。 我们首先展示最低相互信息属性, 即Hilbert 空间两个高斯度和最小相互信息为联合高斯度的配方, 共同高斯度度的配方是联合的。 这是在 Euclidean 空间 Gaussian 密度的最大倍度属性的无限维度常规化。 然后我们给出了最佳通度运输计划、 entropic 2 - Wasserstein 距离和 辛克霍恩 在Hilbert 空间的两个高斯度测量度之间, 以及一组高斯伯特 空间的两度度的固定点方位方程等方程。 我们的配方格充分利用了肿瘤配方的正规化方面面, 在单位环境里和非星际环境中都是无限的。 在无限维度环境中, 普通的 2- Wassersteker 距离和辛科斯坦 之间 之间的相对可变换取,, 我们的中位的中位 中位的中位 中位 的中位 。