Multi-modal distributions are commonly used to model clustered data in statistical learning tasks. In this paper, we consider the Mixed Linear Regression (MLR) problem. We propose an optimal transport-based framework for MLR problems, Wasserstein Mixed Linear Regression (WMLR), which minimizes the Wasserstein distance between the learned and target mixture regression models. Through a model-based duality analysis, WMLR reduces the underlying MLR task to a nonconvex-concave minimax optimization problem, which can be provably solved to find a minimax stationary point by the Gradient Descent Ascent (GDA) algorithm. In the special case of mixtures of two linear regression models, we show that WMLR enjoys global convergence and generalization guarantees. We prove that WMLR's sample complexity grows linearly with the dimension of data. Finally, we discuss the application of WMLR to the federated learning task where the training samples are collected by multiple agents in a network. Unlike the Expectation Maximization algorithm, WMLR directly extends to the distributed, federated learning setting. We support our theoretical results through several numerical experiments, which highlight our framework's ability to handle the federated learning setting with mixture models.
翻译:多模式分布通常用于模拟统计学习任务中的集束数据。 在本文中, 我们考虑了混合线回归( MLR) 问题。 我们为MLR问题提出了一个基于运输的最佳框架, 瓦塞斯坦混合线回归( WMLR), 最大限度地缩小了瓦塞斯坦在所学和目标混合物回归模型之间的距离。 通过基于模型的双重性分析, WMLR 将潜在的 MLR 任务降低为非convex- covelve 小型最大负载优化问题, 这个问题可以解决, 以便找到由梯层回归算法( GDA) 得出的小型固定点。 在两种线回归模型的混合物的特殊情况下, 我们显示WMLRR享有全球趋同和概括化保证。 我们证明WMLR的样本复杂性随着数据层面的线性增长。 最后, 我们讨论WMLRR对由多个代理在网络中收集的培训样本的Federate 学习任务的应用。 与期望最大化算法不同, WMLRRR直接延伸到分布式、 联邦回归模型, 我们用我们的一些理论学习模型来确定。