We focus on the dominant poles of the transfer function of a descriptor system. The transfer function typically exhibits large norm at and near the imaginary parts of the dominant poles. Consequently, the dominant poles provide information about the points on the imaginary axis where the ${\mathcal L}_\infty$ norm of the system is attained, and they are also sometimes useful to obtain crude reduced-order models. For a large-scale descriptor system, we introduce a subspace framework to estimate a prescribed number of dominant poles. At every iteration, the large-scale system is projected into a small system, whose dominant poles can be computed at ease. Then the projection spaces are expanded so that the projected system after subspace expansion interpolates the large-scale system at the computed dominant poles. We prove an at-least-quadratic-convergence result for the framework, and provide numerical results confirming this. On real benchmark examples, the proposed framework appears to be more accurate than SAMDP [IEEE Trans. Power Syst. 21, 1471-1483, 2006], one of the widely used algorithms due to Rommes and Martins for the estimation of the dominant poles.
翻译:我们集中关注描述器系统转移功能的主导极。 传输功能通常在主要极的假想部分及其附近显示大型规范。 因此, 主导极提供了系统达到美元负数L ⁇ infty$规范的假想轴点的信息, 有时它们对于获得粗化的减少顺序模型也很有用。 对于一个大型描述器系统, 我们引入了一个子空间框架来估计一定的主导极数。 在每次迭代中, 大型系统被预测成一个小型系统, 其主导极可以轻松计算。 然后, 预测空间被扩大, 从而在子空间扩张后预测系统在计算出占支配地位的极点上对大型系统进行内插。 我们证明这是框架在最东端的夸阔- 趋同结果, 并提供数字结果来证实这一点。 在真实的基准实例中, 拟议的框架似乎比SAMDP [IEEEE Transy. Power Syst. 21, 1471-1483, 2006] 更准确, 一种广泛使用的算法是罗姆梅斯和马丁对主要极进行估算的结果。