The matrix formation associated to high-order discretizations is known to be numerically demanding. Based on the existing procedure of interpolation and lookup, we design a multiscale assembly procedure to reduce the exorbitant assembly time in the context of isogeometric linear elasticity of complex microstructured geometries modeled via spline compositions. The developed isogeometric approach involves a polynomial approximation occurring at the macro-scale and the use of lookup tables with pre-computed integrals incorporating the micro-scale information. We provide theoretical insights and numerical examples to investigate the performance of the procedure. The strategy turns out to be of great interest not only to form finite element operators but also to compute other quantities in a fast manner as for instance sensitivity analyses commonly used in design optimization.


翻译:已知与高顺序离散有关的矩阵形成在数字上要求很高。根据现有的内插和外观程序,我们设计了一个多尺度组装程序,以减少通过样条组成模型建模的复杂微结构形地貌的等离子线性弹性。发达的等离子测量方法涉及在宏观尺度上出现的多元近似,以及使用包含微观尺度信息的预先计算集成的外观表格。我们提供了理论见解和数字示例,以调查该流程的性能。这一战略不仅对形成有限元素操作员,而且对快速计算其他数量非常感兴趣,例如,在设计优化时通常使用的灵敏度分析。

0
下载
关闭预览

相关内容

FAST:Conference on File and Storage Technologies。 Explanation:文件和存储技术会议。 Publisher:USENIX。 SIT:http://dblp.uni-trier.de/db/conf/fast/
【图与几何深度学习】Graph and geometric deep learning,49页ppt
专知会员服务
41+阅读 · 2021年4月2日
最新《几何深度学习》教程,100页ppt,Geometric Deep Learning
专知会员服务
100+阅读 · 2020年7月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
图神经网络库PyTorch geometric
图与推荐
17+阅读 · 2020年3月22日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
revelation of MONet
CreateAMind
5+阅读 · 2019年6月8日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年9月21日
Arxiv
0+阅读 · 2021年9月21日
Arxiv
9+阅读 · 2021年6月21日
VIP会员
相关资讯
图神经网络库PyTorch geometric
图与推荐
17+阅读 · 2020年3月22日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
revelation of MONet
CreateAMind
5+阅读 · 2019年6月8日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员