A \textit{biclique} is a maximal bipartite complete induced subgraph of $G$. The \textit{biclique graph} of a graph $G$, denoted by $KB(G)$, is the intersection graph of the family of all bicliques of $G$. In this work we study some structural properties of bicliques graphs which are necessary conditions for a graph to be a biclique graph. In particular, we prove that for biclique graphs that are neither a $K_3$ nor a \textit{diamond}, the number of vertices of degree two is less than half of its vertices. Also, we present forbidden structures. For that, we introduce a natural definition of the distance between bicliques in a graph. We give a formula that relates the distance between bicliques in a graph $G$ and the distance between their respective vertices in $KB(G)$. Using these results, we can prove not only this new necessary condition involving the degree, but also that some graphs are not biclique graphs. For example, we show that the \textit{crown} is the smallest graph that is not a biclique graph although the known necessary condition for biclique graphs holds, answering an open problem about biclique graphs. Finally, we present some interesting related conjectures and open problems.


翻译:\ textit{ biclique} 是一个最大双部分完整的 $G$ 引导子图。 由 $KB (G) 表示的 $G$ 图形 的\ textit{ biclique 图形} 是所有 bicliques $G$ 的家族的交叉图 。 在这项工作中, 我们研究了 bicliques 图形的一些结构属性, 这对于图形成为 biclique 图形是必要的条件。 特别是, 我们证明, 对于既不是 K_ 3 $ 或\ textit{ diamon} 的双曲线图来说, 水平 2 的顶点数量小于其顶点的一半 。 另外, 我们展示了被禁止的结构 。 为此, 我们在图表中引入了一种自然定义 。 我们给出了一个公式, 将 bicliqueque $G$G$ (G) 和 各自的顶点之间的距离联系起来 $KB (G) 。 。 使用这些结果, 我们不仅可以证明这个涉及 度的新的必要条件条件,, 也显示 listrue dealtiquestal 的图形是 riquestal 。

0
下载
关闭预览

相关内容

最新《图理论》笔记书,98页pdf
专知会员服务
74+阅读 · 2020年12月27日
专知会员服务
84+阅读 · 2020年12月5日
图节点嵌入(Node Embeddings)概述,9页pdf
专知会员服务
39+阅读 · 2020年8月22日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Arxiv
0+阅读 · 2021年9月17日
Arxiv
9+阅读 · 2021年4月21日
Arxiv
5+阅读 · 2019年6月5日
Arxiv
17+阅读 · 2019年3月28日
VIP会员
相关VIP内容
最新《图理论》笔记书,98页pdf
专知会员服务
74+阅读 · 2020年12月27日
专知会员服务
84+阅读 · 2020年12月5日
图节点嵌入(Node Embeddings)概述,9页pdf
专知会员服务
39+阅读 · 2020年8月22日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Top
微信扫码咨询专知VIP会员