In the identification (ID) scheme proposed by Ahlswede and Dueck, the receiver only checks whether a message of special interest to him has been sent or not. In contrast to Shannon transmission codes, the size of ID codes for a Discrete Memoryless Channel (DMC) grows doubly exponentially fast with the blocklength, if randomized encoding is used. This groundbreaking result makes the ID paradigm more efficient than the classical Shannon transmission in terms of necessary energy and hardware components. Further gains can be achieved by taking advantage of additional resources such as feedback. We study the problem of joint ID and channel state estimation over a DMC with independent and identically distributed (i.i.d.) state sequences. The sender simultaneously sends an ID message over the DMC with a random state and estimates the channel state via a strictly causal channel output. The random channel state is available to neither the sender nor the receiver. For the proposed system model, we establish a lower bound on the ID capacity-distortion function.
翻译:暂无翻译