In spite of the great success of deep learning technologies, training and delivery of a practically serviceable model is still a highly time-consuming process. Furthermore, a resulting model is usually too generic and heavyweight, and hence essentially goes through another expensive model compression phase to fit in a resource-limited device like embedded systems. Inspired by the fact that a machine learning task specifically requested by mobile users is often much simpler than it is supported by a massive generic model, this paper proposes a framework, called Pool of Experts (PoE), that instantly builds a lightweight and task-specific model without any training process. For a realtime model querying service, PoE first extracts a pool of primitive components, called experts, from a well-trained and sufficiently generic network by exploiting a novel conditional knowledge distillation method, and then performs our train-free knowledge consolidation to quickly combine necessary experts into a lightweight network for a target task. Thanks to this train-free property, in our thorough empirical study, PoE can build a fairly accurate yet compact model in a realtime manner, whereas it takes a few minutes per query for the other training methods to achieve a similar level of the accuracy.


翻译:尽管深层学习技术取得了巨大成功,但培训和提供实用模型仍是一个非常耗时的过程。此外,所产生的模型通常过于通用和重量重,因此基本上要经历另一个昂贵的模型压缩阶段,以适合像嵌入系统这样的资源有限的设备。由于移动用户特别要求的机器学习任务往往比大规模通用模型要简单得多,本文件提议了一个称为“专家人才库(PoE)”的框架,这个框架可以不经过任何培训程序即刻建立一个轻巧和具体任务模型。对于实时模型查询服务,PoE首先从一个经过良好训练的、足够通用的网络中抽出一批原始组件,即专家,利用一种新的有条件的知识蒸馏方法,然后进行我们的无培训知识整合,以便迅速将必要的专家纳入一个轻量网络,完成一个目标任务。由于这个没有培训的产业,PoE可以在我们彻底的经验研究中实时地建立一个相当准确但又紧凑的模型,而其他培训方法则需要几分钟的询问,以便达到类似的精确程度。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
72+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
8+阅读 · 2021年7月15日
Arxiv
102+阅读 · 2020年3月4日
Neural Module Networks for Reasoning over Text
Arxiv
9+阅读 · 2019年12月10日
Accelerated Methods for Deep Reinforcement Learning
Arxiv
6+阅读 · 2019年1月10日
Arxiv
3+阅读 · 2018年8月27日
VIP会员
相关VIP内容
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
72+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员