We study kernelization of classic hard graph problems when the input graphs fulfill triadic closure properties. More precisely, we consider the recently introduced parameters closure number $c$ and the weak closure number $\gamma$ [Fox et al., SICOMP 2020] in addition to the standard parameter solution size $k$. For Capacitated Vertex Cover, Connected Vertex Cover, and Induced Matching we obtain the first kernels of size $k^{\mathcal{O}(\gamma)}$ and $(\gamma k)^{\mathcal{O}(\gamma)}$, respectively, thus extending previous kernelization results on degenerate graphs. The kernels are essentially tight, since these problems are unlikely to admit kernels of size $k^{o(\gamma)}$ by previous results on their kernelization complexity in degenerate graphs [Cygan et al., ACM TALG 2017]. In addition, we provide lower bounds for the kernelization of Independent Set on graphs with constant closure number~$c$ and kernels for Dominating Set on weakly closed split graphs and weakly closed bipartite graphs.


翻译:更准确地说,我们考虑的是,除了标准参数溶液大小外,除了标准参数溶液大小外,最近引入的参数封闭号为$c$和薄弱封闭号为$\gamma$[Fox 等人,SICOMP 2020],我们研究经典硬图问题的内核。对于松散的垂直覆盖,连接的垂直覆盖,和导出匹配,我们获得了第一个大小为$kámathcal{O}(gamma)}}$和$(gamma k) mathal{O}(gamma)}}的内核。此外,我们还分别考虑了最近推出的参数关闭号为$c$c$和疲软封闭式平面图上独立设置的内内核,这些问题基本上很紧,因为根据先前关于美元大小为$kçóo(gamma)的内核内核内核分流复杂性的结果,我们不可能接受[Cygan et and al,ACM TALG 2017]。此外,我们还为独立Set Setty Setty Setty Stap Stal-deal listal listal-deal listal 和软闭式平块的软硬化平块数字和软的硬的硬的平块数字和硬的硬的硬的平块数字提供了。

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
最新《自监督表示学习》报告,70页ppt
专知会员服务
85+阅读 · 2020年12月22日
【阿尔托大学】图神经网络,Graph Neural Networks,附60页ppt
专知会员服务
181+阅读 · 2020年4月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
ICLR 2018最佳论文AMSGrad能够取代Adam吗
论智
6+阅读 · 2018年4月20日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年4月30日
Arxiv
0+阅读 · 2021年4月29日
Arxiv
0+阅读 · 2021年4月29日
Arxiv
0+阅读 · 2021年4月28日
VIP会员
相关VIP内容
【图与几何深度学习】Graph and geometric deep learning,49页ppt
最新《自监督表示学习》报告,70页ppt
专知会员服务
85+阅读 · 2020年12月22日
【阿尔托大学】图神经网络,Graph Neural Networks,附60页ppt
专知会员服务
181+阅读 · 2020年4月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
相关资讯
Top
微信扫码咨询专知VIP会员