We prove lower bounds on pure dynamic programming algorithms for maximum weight independent set (MWIS). We model such algorithms as tropical circuits, i.e., circuits that compute with $\max$ and $+$ operations. For a graph $G$, an MWIS-circuit of $G$ is a tropical circuit whose inputs correspond to vertices of $G$ and which computes the weight of a maximum weight independent set of $G$ for any assignment of weights to the inputs. We show that if $G$ has treewidth $w$ and maximum degree $d$, then any MWIS-circuit of $G$ has $2^{\Omega(w/d)}$ gates and that if $G$ is planar, or more generally $H$-minor-free for any fixed graph $H$, then any MWIS-circuit of $G$ has $2^{\Omega(w)}$ gates. An MWIS-formula is an MWIS-circuit where each gate has fan-out at most one. We show that if $G$ has treedepth $t$ and maximum degree $d$, then any MWIS-formula of $G$ has $2^{\Omega(t/d)}$ gates. It follows that treewidth characterizes optimal MWIS-circuits up to polynomials for all bounded degree graphs and $H$-minor-free graphs, and treedepth characterizes optimal MWIS-formulas up to polynomials for all bounded degree graphs.
翻译:我们在最大重量独立设置(MWIS)的纯动态编程算法上证明我们使用最重独立设置(MWIS)的纯动态编程算法。我们以热带电路(即以美元和美元+美元计算美元运行量的电路)为模型,用热带电路计算美元和美元+美元运行量。对于一个G$的图形,MWIS-电路($G$-G$)是一个热带电路,其投入与G$的顶点相对应,并计算出任何输入重量分配的最大重为$G$($G$)的重量独立算法。我们显示,如果G$的MWIS-电路($+美元和美元最大值的平面值),则MWIS-电路路(美元-美元平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面。我们平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面。