We present a multimodal deep learning (MDL) framework for predicting physical properties of a 10-dimensional acrylic polymer composite material by merging physical attributes and chemical data. Our MDL model comprises four modules, including three generative deep learning models for material structure characterization and a fourth model for property prediction. Our approach handles an 18-dimensional complexity, with 10 compositional inputs and 8 property outputs, successfully predicting 913,680 property data points across 114,210 composition conditions. This level of complexity is unprecedented in computational materials science, particularly for materials with undefined structures. We propose a framework to analyze the high-dimensional information space for inverse material design, demonstrating flexibility and adaptability to various materials and scales, provided sufficient data is available. This study advances future research on different materials and the development of more sophisticated models, drawing us closer to the ultimate goal of predicting all properties of all materials.
翻译:我们提出了一种多模态深度学习(MDL)框架,通过合并物理属性和化学数据来预测10维丙烯酸聚合物复合材料的物理性质。我们的MDL模型包括四个模块,包括三个生成深度学习模型用于材料结构描述和第四个模型用于属性预测。我们的方法处理了18维复杂性,包括10个组成输入和8个属性输出,并成功预测了114210种组成情况下913680个属性数据点。这种复杂性在计算材料科学中是前所未有的,尤其是对于结构未定义的材料。我们提出了一个框架来分析高维信息空间,以进行材料逆向设计,证明了对于各种材料和规模的灵活性和适应性,只要提供足够的数据即可。本研究推动了不同材料的研究和更复杂模型的发展,使我们更接近预测所有材料的所有性质的最终目标。