Graph Convolutional Networks (GCNs) have fueled a surge of interest due to their superior performance on graph learning tasks, but are also shown vulnerability to adversarial attacks. In this paper, an effective graph structural attack is investigated to disrupt graph spectral filters in the Fourier domain. We define the spectral distance based on the eigenvalues of graph Laplacian to measure the disruption of spectral filters. We then generate edge perturbations by simultaneously maximizing a task-specific attack objective and the proposed spectral distance. The experiments demonstrate remarkable effectiveness of the proposed attack in the white-box setting at both training and test time. Our qualitative analysis shows the connection between the attack behavior and the imposed changes on the spectral distribution, which provides empirical evidence that maximizing spectral distance is an effective manner to change the structural property of graphs in the spatial domain and perturb the frequency components in the Fourier domain.


翻译:图形革命网络(GCNs)因其在图表学习任务方面的优异性能而激发了人们的兴趣,但也表现出很容易受到对抗性攻击。在本文中,对有效的图形结构攻击进行了调查,以破坏Fourier域的图形光谱过滤器。我们根据图Laplacian的光值来定义光谱距离,以测量光谱过滤器的中断。我们随后通过同时最大限度地实现任务特定攻击目标和拟议的光谱距离,产生边缘扰动。实验表明,在培训和测试时,白箱设置中拟议的攻击非常有效。我们的质量分析显示攻击行为与光谱分布强制变化之间的联系,它提供了经验证据,证明最大限度扩大光谱距离是改变空间域图的结构属性的有效方式,并扰动了Fourier域的频率组成部分。

0
下载
关闭预览

相关内容

图节点嵌入(Node Embeddings)概述,9页pdf
专知会员服务
40+阅读 · 2020年8月22日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Arxiv
7+阅读 · 2021年7月5日
Arxiv
3+阅读 · 2020年4月29日
已删除
Arxiv
32+阅读 · 2020年3月23日
Arxiv
5+阅读 · 2019年6月5日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Top
微信扫码咨询专知VIP会员