We give two asymptotic results for the empirical distance covariance on separable metric spaces without any iid assumption on the samples. In particular, we show the almost sure convergence of the empirical distance covariance for any measure with finite first moments, provided that the samples form a strictly stationary and ergodic process. We further give a result concerning the asymptotic distribution of the empirical distance covariance under the assumption of absolute regularity of the samples and extend these results to certain types of pseudometric spaces. In the process, we derive a general theorem concerning the asymptotic distribution of degenerate V-statistics of order 2 under a strong mixing condition.
翻译:我们给出了两种无症状结果,说明在不假定样本的情况下,对可分离的参数空间的实验距离共变情况。特别是,我们显示了任何措施的经验距离共变情况几乎可以肯定地与最初的有限时间相融合,前提是这些样品形成严格的固定和自传过程。我们进一步给出了假设样本绝对正常的情况下经验距离共变情况的无症状分布结果,并将这些结果扩大到某些类型的伪测量空间。在这个过程中,我们得出了一个关于第2号命令的堕落性V-统计学在强烈混合条件下的无症状分布的一般性理论。