High-quality mesh generation is the foundation of accurate finite element analysis. Due to the vast interior vertices search space and complex initial boundaries, mesh generation for complicated domains requires substantial manual processing and has long been considered the most challenging and time-consuming bottleneck of the entire modeling and analysis process. In this paper, we present a novel computational framework named ``SRL-assisted AFM" for meshing planar geometries by combining the advancing front method with neural networks that select reference vertices and update the front boundary using ``policy networks." These deep neural networks are trained using a unique pipeline that combines supervised learning with reinforcement learning to iteratively improve mesh quality. First, we generate different initial boundaries by randomly sampling points in a square domain and connecting them sequentially. These boundaries are used for obtaining input meshes and extracting training datasets in the supervised learning module. We then iteratively improve the reinforcement learning model performance with reward functions designed for special requirements, such as improving the mesh quality and controlling the number and distribution of extraordinary points. Our proposed supervised learning neural networks achieve an accuracy higher than 98% on predicting commercial software. The final reinforcement learning neural networks automatically generate high-quality quadrilateral meshes for complex planar domains with sharp features and boundary layers.


翻译:Translated abstract: 高质量的网格生成是准确的有限元分析的基础。由于广阔的内部顶点搜索空间和复杂的初始边界,对于复杂领域的网格生成需要大量手动处理,并长期被认为是整个建模和分析过程中最具挑战性和耗时的瓶颈。本文提出了一种新的计算框架,名为“SRL辅助AFM”,通过将前进法与选择参考顶点的神经网络结合,并使用“策略网络”更新前沿边界,来网格化平面几何。这些深度神经网络是通过独特的流程进行训练的,包括结合监督学习和强化学习以迭代提高网格质量的阶段。首先,我们通过在正方形区域中随机抽取点并依次连接它们来生成不同的初始边界。这些边界用于获得输入网格和提取监督学习模块中的训练数据集。然后,我们使用特殊需求的奖励函数(如改进网格质量和控制异常点数量和分布)迭代提高强化学习模型的性能。我们提出的监督学习神经网络在预测商业软件时实现了高达98%的准确度。最后,强化学习神经网络可自动生成具有锐利特征和边界层的复杂平面域的高质量四边形网格。

0
下载
关闭预览

相关内容

JCIM丨DRlinker:深度强化学习优化片段连接设计
专知会员服务
6+阅读 · 2022年12月9日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
31+阅读 · 2022年2月15日
VIP会员
相关基金
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员